A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Classification of foam structures

DOI: 10.1615/thermopedia.000166


Classification of Foam Structures

Following from: Highly porous cellular foams

In order to correctly evaluate the mechanical properties, as well as the thermal properties (such as the conductive and radiative properties), the foam structure must be modeled as close as possible to real three-dimensional (3D) foam geometry.

Description of Foam Morphologies

We consider some typical structures of highly porous cellular materials. Cellular structures can be classified morphologically, distinguished by two types of materials: (1) open cell carbon, metallic, or ceramic foams and (2) closed cell foams, such as polystyrene or polyurethane foams. The foam structure varies significantly depending on whether it is open cell or closed cell foam (Figs. 1 and 2).

Figure 1. (a) Illustration of tomographic 3D image of open cell aluminum foam (Loretz et ...

記事を全文表示するには登録しなければなりません。

既に登録されている場合、ここからログインして下さい
THERMOPEDIA™ への登録を希望される場合、ここからリクエストして下さい。

References

  1. Baillis, D. and Coquard, R., Radiative and conductive thermal properties of foams, in Cellular and Porous Materials: Thermal Properties Simulation and Prediction, eds. Öchsner, A., Murch, G. E., and de Lemos, M. J. S, Weinheim: Wiley-VCH, pp. 343-384, 2008.
  2. Baillis, D., Raynaud, M., and Sacadura J.-F., Spectral radiative properties of open-cell foam insulation, J. Thermophys. Heat Transfer, vol. 13, no. 3, pp. 292-298, 1999.
  3. Baillis, D., Raynaud, M., and Sacadura, J.-F., Determination of spectral radiative properties of open cell foam. Model validation, J. Thermophys. Heat Transfer vol. 14, no. 2, pp. 137-143, 2000.
  4. Coquard, R. and Baillis, D., Modeling of heat transfer in low-density EPS foams, ASME J. Heat Transfer, vol. 128, no. 6, pp. 538-549, 2006.
  5. Coquard, R. and Baillis, D., Numerical investigation of the radiative properties of polymeric foams from tomographic images, AIAA J. Thermophys. Heat Transfer, vol. 24, no. 3, pp. 647-658, 2010.
  6. Coquard, R., Baillis, D., and Quenard, D., Radiative properties of expanded polystyrene foams, ASME J. Heat Transfer, vol. 131, no. 1, pp. 012702.1-012702.10, 2009.
  7. Glicksman, L. R., Marge, A. L., and Moreno, J. D., Radiation heat transfer in cellular foam insulation, ASME HTD, vol. 203, pp. 45-54, 1992.
  8. Kaemmerlen, A., Vo, C., Asllanaj, F., Jeandel, G., and Baillis. D., Radiative properties of extruded polystyrene foams: Predictive models and experimental results, J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 6, pp. 865-877, 2010.
  9. Kuhn, J., Ebert, H. P., Arduini-Schuster, M. C., Büttner, D., and Fricke, J., Thermal transport in polystyrene and polyurethane foam insulations, Int. J. Heat Mass Transfer, vol. 35, no. 7, pp. 1795-1801, 1992.
  10. Loretz, M., Maire , E., and Baillis, D., Analytical modelling of the radiative properties of metallic foams: Contribution of X-ray tomography, Adv. Eng. Mater., vol. 10, no. 4, pp. 352-360, 2008.
  11. Petrasch, J., Wyss, P., and Steinfeld, A., Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics, J. Quant. Spectrosc. Radiat. Transf., vol. 105, no. 2, pp. 180-197, 2007.
  12. Zeghondy, B., Iacona, E., and Taine, J., Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI), Int. J. Heat Mass Transfer, vol. 49, no. 17-18, pp. 2810-2819, 2006.
表示回数:35906 記事追加日:7 September 2010 記事最終修正日:2 August 2012 ©著作権 2010-2019 トップへ戻る