A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Liquid droplet radiator for space applications

DOI: 10.1615/thermopedia.000212


Investigations of the liquid droplet radiator (LDR) for space applications have been conducted during last two decades because of its high power-generation efficiency, i.e., relatively small mass in comparison with other radiators of the same power. The information on the engineering problem and the main energetic parameters of droplet radiators has been ...

記事を全文表示するには登録しなければなりません。

既に登録されている場合、ここからログインして下さい
THERMOPEDIA™ への登録を希望される場合、ここからリクエストして下さい。

References

  1. Averin, V. V., Dmitriev, A. S., and Klimenko, A. V., Thermal Radiation of a Three-Dimensional Lattice of Spherical Particles, High Temp., vol. 27, no. 3, pp. 452-458, 1989a.
  2. Averin, V. V., Dmitriev, A. S., and Klimenko, A. V., Thermal Radiation of Regular Spherical Particle Structures with Fluctuational Thermal Fluids Being Taken into Account, Int. Commun. Heat Mass Transfer, vol. 16, no. 3, pp. 403-414, 1989b.
  3. Bayazitoglu, Y. and Jones, P. D., Enclosure and Conductive Effects on Thermal Performance of Liquid Droplet Radiators, J. Thermophys. Heat Transfer, vol. 4, no. 2, pp. 186-192, 1990.
  4. Dombrovsky, L. A., Radiation Heat Transfer in Disperse Systems, Begell House, New York and Redding, CT, 1996.
  5. Knap, K., Lightweight Moving Radiators for Heat Rejection in Space, Spacecraft Radiative Transfer and Temperature Control, Progress in Astronautics and Aeronautics, vol. 83, pp. 325-341, 1982.
  6. Konyukhov, G. V., Koroteev, A. A., Novomlinskii, V. V., and Baushev, B. N., Modeling of Radiative Heat Transfer and Mass Transfer Processes in Drop-Flow-Based Heat Exchangers for Spacecraft, J. Eng. Phys. Thermophys., vol. 71, no. 1, pp. 87-91, 1998.
  7. Mattick, A. T. and Hertzberg, A., Liquid Droplet Radiators for Heat Rejection in Space, J. Energy, vol. 5, no. 6, pp. 387-393, 1981.
  8. Mattick, A. T. and Hertzberg, A., The Liquid Droplet Radiator--An Ultra Lightweight Heat Rejection System for Efficient Energy Conversion in Space, Acta Astronaut., vol. 9, no. 3, pp. 165-172, 1982.
  9. Mattick, A. T. and Hertzberg, A., Liquid Droplet Radiator Performance Studies, Acta Astronaut., vol. 12, no. 7/8, pp. 591-598, 1985.
  10. Siegel, R., Separation of Variables Solution for Nonlinear Radiative Cooling, Int. J. Heat Mass Transfer, vol. 30, no. 5, pp. 959-965, 1987a.
  11. Siegel, R., Transient Radiative Cooling of a Droplet Filled Layer, ASME J. Heat Transfer, vol. 19, no. 1, pp. 159-164, 1987b.
  12. Siegel, R., Transient Radiative Cooling of Absorbing and Scattering Cylinder--A Separable Solution, J. Thermophys. Heat Transfer, vol. 2, no. 2, pp. 110-117, 1988.
  13. Siegel, R., Radiative Cooling Performance of a Converging Liquid Drop Radiator, J. Thermophys. Heat Transfer, vol. 3, no. 1, pp. 46-52, 1989a.
  14. Siegel, R., Solidification by Radiation Cooling of a Cylindrical Region Filled with Drops, J. Thermophys. Heat Transfer, vol. 3, no. 3, pp. 340-344, 1989b.
  15. Siegel, R., Some Aspects of Transient Cooling of a Radiating Rectangular Medium, Int. J. Heat Mass Transfer, vol. 32, no. 10, pp. 1955-1966, 1989c.
  16. Siegel, R., Emittance Bounds for Transient Radiative Cooling of a Scattering Rectangular Region, J. Thermophys. Heat Transfer, vol. 4, no. 1, pp. 106-114, 1990.
  17. Siegel, R., Transient Cooling of a Square Region of Radiating Medium, J. Thermophys. Heat Transfer, vol. 5, no. 4, pp. 495-501, 1991.
  18. Tagliafico, L. A. and Fossa, M., Lightweight Radiator Optimization for Heat Rejection in Space, Heat Mass Transfer, vol. 32, no. 4, pp. 239-244, 1997.
  19. Taussig, R. T. and Mattick, A. T., Droplet Radiator Systems for Spacecraft Thermal Control, J. Spacecraft Rockets, vol. 23, no. 1, pp. 10-17, 1986.
  20. White, K. A., Liquid Droplet Radiator Development Status, AIAA Paper No. 1537, 1987.
表示回数:26103 記事追加日:7 September 2010 記事最終修正日:27 June 2011 ©著作権 2010-2020 トップへ戻る