A-to-Z Guide to Thermodynamics,
Heat & Mass Transfer, and Fluids Engineering
English Русский 中文 Português Español Français Deutsch About Editors Contact us Access Begell House
View in Semantic Map View in A-Z Index

In their books, Baillis and Coquard (2008) and Dombrovsky and Baillis (2010) give comprehensive general overviews of the experimental approaches and theoretical models commonly used to determine the radiative properties of highly porous cell foams. Here, a summary is presented concerning open cell foams, but the reader is encouraged to consult the above-mentioned books for more details and specific results.

The results of the experimental characterizations of the spectral radiative properties of metallic, ceramic, and phenolic open cell foams have been reported by Hendricks and Howell (1996), Tseng and Kuo (2002) and Zhao et al. (2004). The radiative properties were identified from the transmittance and reflectance measurements using an identification proce ...

You need a subscription to view the full text of the article.

If you already have the subscription, please login here
If you want to subscribe to THERMOPEDIA™ please make your request here.


  1. Baillis, D. and Coquard, R., Radiative and conductive thermal properties of foams, in Cellular and Porous Materials: Thermal Properties Simulation and Prediction, eds. Öchsner, A., Murch, G. E., and de Lemos, M. J. S, Weinheim: Wiley-VCH, pp. 343–384, 2008.
  2. Baillis, D. Raynaud, M., and Sacadura J. F., Spectral radiative properties of open-cell foam insulation, J. Thermophys. Heat Transfer, vol. 13, no. 3, pp. 292–298, 1999.
  3. Baillis, D., Raynaud, M., and Sacadura, J. F., Determination of spectral radiative properties of open cell foam. Model validation, J. Thermophys. Heat Transfer, vol. 14, no. 2, pp. 137–143, 2000.
  4. Brewster, M. Q., Thermal Radiative Transfer and Properties, New York: Wiley, 1992.
  5. Doermann, D. and Sacadura, J. F., Heat transfer in open cell foam insulation, ASME J. Heat Transfer, vol. 118, no. 1, pp. 88–93, 1996.
  6. Dombrovsky, L. A. and Baillis, D., Thermal Radiation in Disperse Systems: An Engineering Approach, Redding, CT: Begell House, 2010.
  7. Haussener, S., Coray, P., Wyss, P., Lipinsky, W., and Steinfeld, A., Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing, ASME J. Heat Transfer, vol. 132, no. 2, pp. 023305.1––023305.9, 2010.
  8. Hendricks, T. J., and Howell, J. R., Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics, ASME J. Heat Transfer, vol. 118, no. 1, pp. 79–87, 1996.
  9. Loretz, M., Caractérisation des propriétés thermiques de mousses céramiques et métalliques à partir d’analyses tomographiques aux rayons X, Ph.D. thesis, INSA, Lyon, France, 2008.
  10. Loretz, M., Coquard, R., Baillis, D., and Maire E., Metallic foams: Radiative properties/comparison between different models, J. Quant. Spectrosc. Radiat. Transf., vol. 109, no. 1, pp. 16–27, 2008a.
  11. Loretz, M., Maire, E., and Baillis, D., Analytical modelling of the radiative properties of metallic foams: Contribution of X-ray tomography, Adv. Eng. Mater., vol. 10, no. 4, pp. 352–360, 2008b.
  12. Petrasch, J., Wyss, P., and Steinfeld, A., Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics, J. Quant. Spectrosc. Radiat. Transf., vol. 105, no. 2, pp. 180–197, 2007.
  13. Tancrez, M. and Taine, J., Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique, Int. J. Heat Mass Transfer, vol. 47, no. 2, pp. 373–383, 2004.
  14. Tseng, C. J. and Kuo, K. T., Thermal radiative properties of phenolic foam insulation, J. Quant. Spectrosc. Radiat. Transf., vol. 7, no. 4, pp. 349–359, 2004, 2002.
  15. van de Hulst, H. C., Light Scattering by Small Particles, New York: Wiley, 1957.
  16. van de Hulst, H. C., Light Scattering by Small Particles, New York: Dover, 1981.
  17. Zeghondy, B., Iacona, E., and Taine, J., Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI), Int. J. Heat Mass Transfer, vol. 49, no. 17–18, pp. 2810–2819, 2006a.
  18. Zeghondy, B., Iacona, E., and Taine, J., Experimental and RDFI calculated radiative properties of a mullite foam, Int. J. Heat Mass Transfer, vol. 49, no. 19–20, pp. 3702–3707, 2006b.
  19. Zhao, C. Y., Lu, T. J., and Hodson, H. P., Thermal radiation in ultralight metal foams with open cells, Int. J. Heat Mass Transfer, vol. 47, no. 14–16, pp. 2927–2939, 2004.
Number of views: 35373 Article added: 7 September 2010 Article last modified: 17 January 2012 © Copyright 2010-2021 Back to top
A-Z Index Authors / Editors Semantic Map Visual Gallery Contribute Guest