A-to-Z Guide to Thermodynamics,
Heat & Mass Transfer, and Fluids Engineering
English Русский 中文 Português Español Français Deutsch About Editors Contact us Access Begell House
View in Semantic Map View in A-Z Index

Highly porous fibrous materials present thermal insulating performance for use in aerospace, automotive, marine, and building applications. Building thermal insulation is a main scope of applications (see the article Spectral radiative properties of some important materials: Experimental data and theoretical models). It can be noted that glass wools are the most widely sold materials for the building thermal insulation. The radiative properties of fibrous media containing glass–wool or carbon or aramid fibers can be modeled using the absorption and scattering characteristics of infinite circular cylinders, which can be randomly oriented or have particular orientations inducing an isotropic or anisotropic structure, respectively. T ...

You need a subscription to view the full text of the article.

If you already have the subscription, please login here
If you want to subscribe to THERMOPEDIA™ please make your request here.


  1. Boulet, P., Jeandel, G., and Morlot, G., Model of radiative transfer in fibrous media-Matrix method, Int. J. Heat Mass Transfer, vol. 36, no. 2, pp. 4287-4297. 1993.
  2. Boulet, P., Jeandel, G., Morlot, G., Silberstein, A., and Dedianous, P., Study of the radiative behaviour of several fiberglass materials, in Thermal Conductivity, ed. Tong, T. W., Lancaster, PA: Technomic, pp. 749-759, 1994.
  3. Cunnington, G. R. and Lee, S.-C., Radiative properties of fibrous insulations: Theory versus experiment, J. Thermophys. Heat Transfer, vol. 10, no. 3, pp. 460-466, 1996.
  4. Dombrovsky, L. A., Infrared and microwave radiative properties of metal coated microfibres, Rev. Gen. Therm., vol. 37, no. 11, pp. 925-933, 1998.
  5. Dombrovsky, L., and Baillis, D., Thermal Radiation in Disperse Systems: An Engineering Approach, Redding, CT: Begell House, 2010.
  6. Heino, J , Arridge, S., Sikora, J., and Somersalo, E., Anisotropic effects in highly scattering media, Phys. Rev. E, vol. 68, pp. 031908.1-031908.8, 2003.
  7. Houston, R. L. and Korpela, S. A., Heat transfer through fiberglass insulation, Proc. of 7th International Heat Transfer Conference, vol. 2, pp. 499-504, 1982.
  8. Jeandel, G., Boulet, P., and Morlot, G., Radiative transfer through a medium of silica fibers oriented in parallel planes, Int. J. Heat Mass Transfer, vol. 36, no. 3, pp. 531-536, 1993.
  9. Kamdem Tagne, H. T., Etude du transfert thermique dans les mileux poreux anisotropies. Application aux isolants thermiques en fibres de silice, Ph.D. thesis, INSA, Lyon, France, 2008.
  10. Kamdem Tagne, H. T. and D. Baillis, D., Radiative heat transfer using isotropic scaling approximation: Application to fibrous medium, ASME J. Heat Transfer, vol. 127, no. 10, pp. 1115-1123, 2005a.
  11. Kamdem Tagne, H. T. and Baillis, D., Isotropic scaling limits for one-dimensional radiative heat transfer with collimated incidence, J. Quant. Spectrosc. Radiat. Transf., vol. 93, no. 1-3, pp. 103-113, 2005b.
  12. Kamdem Tagne, H. T. and Baillis, D., Reduced models for radiative heat transfer analysis through anisotropic fibrous medium, ASME J. Heat Transfer, vol. 132, no. 7, pp. 072403.1-072403.8, 2010.
  13. Lee, S.-C., Radiative transfer through a fibrous medium: allowance for fiber orientation, J. Quant. Spectrosc. Radiat. Transf., vol. 36, no. 3, pp. 253-263, 1986.
  14. Lee, S.-C., Effect of fiber orientation on thermal radiation in fibrous media, Int. J. Heat Mass Transfer, vol. 32, no. 2, pp. 311-319, 1989.
  15. Lee, S.-C., Scattering phase function for fibrous media, Int. J. Heat Mass Transfer, vol. 33, no. 10, pp. 2183-2190, 1990.
  16. Lee, S.-C., Enhanced thermal performance of fibrous insulation containing nonhomogeneous fibers, J. Quant. Spectrosc. Radiat. Transf., vol. 50, no. 2, pp. 199-209, 1993.
  17. Lee S.-C. and Cunnington, G. R., Theoretical models for radiation heat transfer in fibrous media, in Annual Review of Heat Transfer, ed. Tien, C. L., vol. 9, New York: Begell House, pp. 159-218, 1998.
  18. Lee, S. C. and Cunnington, G. R., Conduction and radiation heat transfer in high-porosity fiber thermal insulation, J. Thermophys. Heat Transfer, vol. 14, no. 2, pp. 121-136, 2000.
  19. Marschall, J. and Milos, F. S., The calculation of anisotropic extinction coefficients for radiation diffusion in rigid fibrous ceramic insulations, Int. J. Heat Mass Transfer, vol. 40, no. 3, pp. 627-634, 1997.
  20. Mathews, L. K., Viskanta, R., and Incropera, F. P., Development of inverse methods for determining thermophysical and radiative properties of high temperature fibrous materials, Int. J. Heat Mass Transfer, vol. 27, no. 4, pp. 487-495, 1984.
  21. Milandri, A., Asllanaj, F., and Jeandel, G., Determination of radiative properties of fibrous media by an inverse method—Comparison with the Mie theory, J. Quant. Spectrosc. Radiat. Transf., vol. 74, no. 5, pp. 637-653, 2002.
  22. Nicolau, V. P., Raynaud, M., and Sacadura, J.-F., Spectral radiative properties identification of fiber insulating materials, Int. J. Heat Mass Transfer, vol. 37, no. 1, pp. 311-324, 1994.
  23. Tong, T. W. and Tien, C. L., Analytical models for thermal radiation in fibrous insulation, J. Therm. Insul., vol. 4, no. 7, pp. 27-44, 1980.
  24. Wan, X., Fan, J., and Wu, H., Measurement of thermal radiative properties of penguin down and other fibrous materials using FTIR, Polym. Test., vol. 28, no. 7, pp. 673-679, 2009.
  25. Yeh, H. Y., Radiative properties and heat transfer analysis of fibrous insulation, Ph.D. thesis, University of Mississippi, 1986.
Number of views: 39687 Article added: 7 September 2010 Article last modified: 17 January 2012 © Copyright 2010-2021 Back to top
A-Z Index Authors / Editors Semantic Map Visual Gallery Contribute Guest