Guía completa de termodinámica, transferencia de calor & y masa e ingeniería de líquidos
Español English Русский 中文 Português Français Deutsch Acerca de Junta editorial Contacto Acceso Begell House
View in Semantic Map View in A-Z Index


R. Viskanta

Following from: Radiative transfer in combustion systems; Combustion phenomena affected by radiation

Leading to: Radiative transfer in turbulent flames; Radiative transfer in combustion chambers; Radiative transfer in two-phase combustion; Thermal radiation in unwanted fires

The role of radiation in laminar and turbulent flames has recently been reviewed (Chan, 2005; Viskanta 2005), and computational methods for solving the RTE in combustion systems have been discussed (Viskanta, 2008). These methods allow one to simulate chemically reacting flow and heat transfer in multidimensional combustion systems.

In the vast majority of fundamental flame studies, radiation has been neglected, partly because in many instances radiation plays only a secondary role and partly also because the accounting for thermal radiation is a difficult task. Radiation from flames has also been thought to be important only in furnaces and in fires of suf ...

Necesita una suscripción para ver el texto completo del artículo.

Si ya tiene una suscripción, inicie sesión aquí
Si desea suscribirse a THERMOPEDIA™ haga su solicitud aquí.


  1. Barlow, R. S., Karpetis, A. N., Frank, J. H., and Chen, J.-Y., Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially Premixed Methane/Air Flames, Combust. Flame, vol. 127, pp. 2102-2118, 2001.
  2. Bedir, H., T’ien, J. S., and Lee, H. S., Comparison of Different Radiation Treatments for a One-Dimensional Diffusion Flame, Combust. Theory Modeling, vol. 1, pp. 395-404, 1997.
  3. Chan, S. H., Yin, J. Q., and Shi, B. J., Structure and Extinction of Methane-Air Flamlet with Radiation and Detailed Chemical Kinetic Mechanism, Combust. Flame, vol. 112, pp. 445-456, 1998.
  4. Chan, S. H., Combined Radiation and Combustion, Annual Review of Heat Transfer, Vol. 14, C. L. Tien (ed.), Begell House, New York and Redding, CT, pp. 49-64, 2005.
  5. Claramunt, K., Consul, R., Pérez-Segarra, C. D., and Oliva A., Multidimensional Mathematical Modeling and Numerical Investigation of Co-Flow Partially Premixed Methane/Air Laminar Flames, Combust. Flame, vol. 137, pp. 444-457, 2004.
  6. DeRis, J., Fire Radiation--A Review,Proc. Combust. Inst., vol. 17, pp. 1003-1015, 1979.
  7. Dixon-Lewis, G., Structure of Laminar Flames, 23rd Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 305-324, 1990.
  8. Kennedy, I. M., Models of Soot Formation and Oxidation, Prog. Energy Combust. Sci., vol. 23, pp. 95-132, 1997.
  9. Liu, F., Guo, H., and Smallwood, G. S., Effects of Radiation on the Modeling of a Maninar Coflow Methane/Air Diffusion Flame, Combust. Flame, vol. 138, pp. 136-154, 2004.
  10. Kim, O. J., Gore, J. P., Viskanta, R., and Zhu, X. L., Prediction of Self-Absorption of Radiation on an Opposed Flow Diffusion and Partially Premixed Flames Using Weighted Sum of Gray Gases Model (WSGGM)-Based Spectral Model, Numer. Heat Transfer, Part A, vol. 44, pp. 335-353, 2003.
  11. McEnally, C. S. and Pfefferle, L. D., Experimental Study of Nonfuel Hydrocarbon Concentrations in CoFlowing Premixed Mehane/Air Flames,Combust. Flame, vol. 118, pp. 619-632, 1999.
  12. Sarofim, A. F., Radiation Heat Transfer in Combustion: Friend or Foe, Proc. Combust.Inst., Vol. 21, The Combustion Institute, Philadelphia, pp. 1-23, 1986.
  13. Shih, H. Y., Bedir, H. Tien, J. S., and Song, C. J., Computed Flammability Limits of Opposed- Jet H2/O2/N2 Diffusion Flames at Low Pressure, J. Propul. Power, vol. 15, no. 6, pp. 903-908, 1999.
  14. Smooke, M. D., Mcenally, C. S., Pfefferle, L. D., Hall, R. J., and Colket, M. B., Computational and Experimental Study of Soot Formation in a Coflow, Laminar Diffusion Flame, Combust. Flame, vol. 117, pp. 117-139, 1999.
  15. Turns, S. R., An Introduction to Combustion, 2nd ed., McGraw-Hill, New York, 2000.
  16. Viskanta, R., Radiative Transfer in Combustion Systems: Fundamental and Applications, Begell House, New York and Redding, CT, 2005.
  17. Viskanta, R., Computation of Radiative Transfer in Combustion Systems, Int. J. Num. Methods for Heat and Fluid Flow, vol. 18, no. 3/4, pp. 415-442, 2008.
  18. Williams, F. A., Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, 2nd ed., Benjamin/Cummings Publishing, Menlo Park, CA, 1985.
  19. Wang, J. and Niioka, T., Numerical Study of Radiation Reabsorption Effect on Nox Formation in CH4/Air Counterflow Premixed Flames, Proc. Combust. Inst., vol. 29, pp. 2211-2218, 2002.
  20. Zhu, X. L., Gore, J. P., Karpetis, A. H., and Barlow, R. S., The Effects of Self-Absorption of Radiation on an Opposed Flow Partially Premixed Flame, Combust. Flame, vol. 129, pp. 342-345, 2002.
  21. Zhu, X. L., Kim, O. J., Gore, J. P., Takeno, T., and Viskanta, R., The Radiation-Chemistry. Interactions in an Opposed Flow Methane/Air Partially-Premixed Flame, Proc. of 2002 Technical Meeting of the Central State Section of the Combustion Institute, The Combustion Institute, Pittsburgh, 2002.
Número de vistos: 36948 Artículo añadido: 7 September 2010 Último artículo modificado: 30 May 2011 © Copyright 2010-2021 Volver arriba
Índice A-Z Autor / Editores Mapa Semántico Galería Visual Contribuir Guest