Guide alphabétique, de la thermodynamique, amplification de chaleur, transfert de masse, et dynamique des fluides
Français English Русский 中文 Português Español Deutsch À propos Comité de rédaction Contactez-nous Accès Begell House
View in A-Z Index

The trapezoidal rule is an approximate method of estimating a definite integral .

The interval of integration is separated into n partial subintervals xi, xi=1, i = 0, 1, ..., n – 1. On each subinterval a subintegral function is replaced by a linear one.

An integral on the interval xi, xi+1 is calculated approximately by the formula for the trapezoid area


The summation of the left and the right parts of this approximate equality brings about the trapezoidal rule


For the case of n equidistant cusps the expression is simplified and is reduced to the form


This quadrature formula is correct for trigonometric functions , , k = 0, 1, ..., n – 1. When b – a = 2π, the trapezoidal formula is exact for all trigonometric polynomials of order not higher (n – 1).

The error of a quadrature formula |R(f)| is the modulus of the difference between the exact value of the integral and the quadrature sum, for double differentiable subintegral functions, this does not exceed


On finding a complete limit error of a quadrature formula an error of addition must also be accounted, if an addend f(xi) is calculated with an absolute error not exceeding ε, then the total error of the quadrature formula without considering a concluding round off error does not exceed ≤ (b – a)ε + |R(f)|.

Nombre de vues : 21161 Article ajouté : 2 February 2011 Dernière modification de l'article : 10 February 2011 © Copyright 2010-2022 Retour en haut de page
Index A-Z Auteur / Rédacteurs Carte sémantique Galerie visuelle Contribuez Guest