Guide alphabétique, de la thermodynamique, amplification de chaleur, transfert de masse, et dynamique des fluides
Library Subscription:

Various porous materials are widely used as thermal insulation for many engineering problems (Bynum, 2001). The majority of these materials are made of substances characterized by low thermal conductivity. Thus, the resulting thermal conductivity of the insulation decreases. However, the low-conductivity substances are usually semitransparent in the visible and near-infrared spectral ranges. The latter makes it especially important to correctly account for the thermal radiation mode of heat transfer in the porous material, with specific attention to spectral radiative characteristics in the near-infrared. One can formulate the following typical features of scattering ...

Vous devez souscrire un abonnement pour afficher le texte intégral de l'article.

Si vous êtes déjà abonné (e), veuillez vous identifier ici
Si vous souhaitez vous abonner à THERMOPEDIA™, veuillez en faire la demande ici.


  1. Ahrenkiel, R. K., Modified Kramers-Krönig analysis of optical spectra, J. Opt. Soc. Am., vol. 61, no. 12, pp. 1651-1655, 1971.
  2. Bynum, R. T., Jr., Insulation Handbook, New York: McGraw-Hill, 2001.
  3. Davis K. M. and Tomozawa, M., An infrared spectroscopic study of water-related species in silica glasses, J. Non-Cryst. Solids, vol. 201, no. 3, pp. 177-198, 1996.
  4. Dombrovsky, L. A. Radiation Heat Transfer in Disperse Systems, New York: Begell House, 1996.
  5. Dombrovsky, L. A., Approximate models of radiation scattering in hollow-microsphere ceramics, High Temp., vol. 42, no. 5, pp. 776-784, 2004.
  6. Dombrovsky, L., Randrianalisoa, J., Baillis, D., and Pilon, L., Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles, Appl. Opt., vol. 44, no. 33, pp. 7021-7031, 2005.
  7. Dombrovsky, L., Lallich, S., Enguehard, F., and Baillis, D.. An effect of “scattering by absorption” observed in near-infrared properties of nanoporous silica, J. Appl. Phys., vol. 107, no. 8, p. 083106, 2010.
  8. Draine, B. T., The discrete dipole approximation for light scattering by irregular targets, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, edited by M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Chap. 5, San Diego: Academic Press, 2000.
  9. Enguehard, F., Multiscale modeling of radiation heat transfer through nanoporous superinsulating materials, Int. J. Thermophys., vol. 28, no. 5, pp. 1693-1717, 2007.
  10. Khashan, M. A. and Nassif, A. Y., Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3 μm, Optics Commun., vol. 188, no. 1-4, pp. 129-139, 2001.
  11. Kitamura, R., Pilon, L., and Jonasz, M., Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperatures, Appl. Opt., vol. 46, no. 33, pp. 8118-8133, 2007.
  12. Lallich, S., Enguehard, F., and Baillis, D., Experimental determination and modeling of the radiative properties of silica nanoporous matrixes, ASME J. Heat Transfer, vol. 131, no. 8: p. 082701, 2009.
  13. Malitson, I. H., Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am., vol. 55, no. 10, pp. 1205-1209, 1965.
  14. Modest, M. F., Radiative Heat Transfer, 2nd ed., New York: Academic Press, 2003.
  15. Peng, L., Qisui, W., Xi, L., and Chaocan, Z., Investigation of the states of water and OH groups on the surface of silica, Colloids Surf. A: Physicochem. Eng. Aspects, vol. 334, no. 1-3, pp. 112-115, 2009.
  16. Plotnichenko, V. G., Sokolov, V. O., and Dianov, E. M., Hydroxyl groups in high-purity silica glass, J. Non-Cryst. Solids, vol. 261, no. 1-3, pp. 186-194, 2000.
  17. Reim, M., Körner, W., Manara, J., Korder, S., Arduini-Schuster, M., Ebert, H.-P., and Fricke, J., Silica aerogel granulate material for thermal insulation and daylighting, Solar Energy, vol. 79, no. 2, pp. 131-139, 2005.
  18. Tomozawa, M., Kim, D.-L., Agarwal, A., and Davis, K.M., Water diffusion and surface structural relaxation of silica glasses, J. Non-Cryst. Solids, vol. 288, no. 1-3, pp. 73-80, 2001.
  19. Wiener, M., Reichenauer, G., Braxmeier, S., Hemberger, F., and Ebert, H.-P., Carbon aerogel-based high-temperature thermal insulation, Int. J. Thermophys., vol. 30, no. 4, pp. 1372-1385, 2009.
  20. Zhuravlev, L. T., The surface chemistry of amorphous silica. Zhuravlev Model, Colloids Surf. A: Physicochem. Eng. Aspects, vol. 173, no. 1, pp. 1-38, 2000.
Nombre de vues : 36604 Article ajouté : 7 September 2010 Dernière modification de l'article : 21 September 2011 © Copyright 2010-2021 Retour en haut de page