Guide alphabétique, de la thermodynamique, amplification de chaleur, transfert de masse, et dynamique des fluides
Français English Русский 中文 Português Español Deutsch À propos Comité de rédaction Contactez-nous Accès Begell House
View in Semantic Map View in A-Z Index


R. Viskanta

Following from: Radiative transfer in combustion systems; Combustion phenomena affected by radiation; Radiative transfer in laminar flames; Radiative transfer in turbulent flames; Radiative transfer in combustion chambers

Leading to: Thermal radiation in unwanted fires

In many practical combustion systems, fuel starts as a liquid or as a solid, which is then burned by a gaseous oxidizer. Examples of combustion systems burning liquid fuels include oil-fired industrial boilers and furnaces, turbines and rocket engines, process heaters, and liquid fuel-powered engines. Instances of combustion of solids include pulverized coal, wood, plastics, trash, agricultural waste, and refuse. For example, thermal radiation is the principal mode of heat transfer in industrial and utility furnaces burning pulverized coal. Both band emission from CO2 and H2O and continuous emission from particles of various types (coal, char, soot, and ash) ...

Vous devez souscrire un abonnement pour afficher le texte intégral de l'article.

Si vous êtes déjà abonné (e), veuillez vous identifier ici
Si vous souhaitez vous abonner à THERMOPEDIA™, veuillez en faire la demande ici.


  1. Backreedy, R. I., Fletcher, L. M., Ma, L., Pourkhashanian, M., and Williams, A., Modeling Pulverized Coal Combustion Using a Detailed Coal Combustion Model, Combust. Sci. Tech., vol. 178, pp. 763-787, 2006.
  2. Baek, S. W., Kim S. H., Yu, Yu, Y. J., Kang, S. J., and Kim, M. Y., Application of the Extended Weighted Sum of Gray Gases Model to Light Fuel Oil Spray Combustion, Combust. Sci. Technol., vol. 174, pp. 37-70, 2002.
  3. Bauhawy, Y. El. and Whitelaw, J. H., Calculation of the Flow Properties of Confined Kerosene - Spray Flame, AIAA J., vol. 18, pp. 1503-1510, 1980.
  4. Baukal, Jr., C. E., Gershtein, V. Y., and Li, X. (eds.), Computational Fluid Dynamics in Industrial Combustion, CRC Press, Boca Raton, 2001.
  5. Blokh, A. G., Heat Transfer in Steam Boiler Furnaces, Hemisphere Publishing, Washington, 1988.
  6. Butler, B. W., Denison, D. K., and Webb, B. K., Radiation Heat Transfer in a Laboratory-Scale Pulverized Coal-Fired Furnace, Exp. Thermal Fluid Sci., vol. 9, pp. 69-79, 1994.
  7. Byun, D. and Baek, S. W., Numerical Investigation of Combustion with Non-Gray Thermal Radiation and Soot Formation Effect in a Liquid Rocket Engine, Int. J. Heat Mass Transfer, vol. 50, pp. 412-422, 2007.
  8. Chiu, H. H., Advances and and Challenges in Droplet and Spray Combustion, Prog. Energy Combust. Sci., vol. 26, pp. 381-416, 2000.
  9. Cho, S. M., Furnace Combustion and Heat Transfer in large Utility Boilers, In J.S. Lee et al. (eds.), Heat Transfer 1998--Proceedings of the 11th International Heat Transfer Conference, Vol. 1, Begell House, New York, pp. 301-315, 1998.
  10. Choi, C. E. and Baek, S. W., Numerical Analysis of a Spray Combustion with Nonspray Radiation Using Weighted Sum of Gray Gases Model, Combust. Sci. Technol., vol. 115, pp. 297-315, 1996.
  11. Dombrovsky, L. A., Radiation Heat Transfer in Disperse Systems, Begell House, New York and Redding, CT, 1996.
  12. Dombrovsky, L. A. and Baillis, D., Thermal Raiation in Disperse Systems: An Engineering Approach, Begell House, New York and Redding, CT, 2010.
  13. Eaton, A. M., Smoot, L. D., Hill, S. C. and Eatough, C. N., Components, Formulation, Solutions, Evaluation and Application of Combustion Models, Prog. Energy Combust. Sci., vol. 25, pp. 387-436, 1999.
  14. Faeth, G. M., Evaporation and Combustion of Sprays, Prog. Energy Combust. Sci., vol. 9, pp. 1-76, 1983.
  15. Hanby, V. I. and Li, G., Simulated Combustion and Heat Transfer in Gas-Fired and Oil-Fired Commercial Boilers, J. Inst. Energy, vol. 71, pp. 64-70, 1998.
  16. Kuo, K. K., Principles of Combustion, Wiley, Hoboken, NJ, 1986.
  17. Lee, F. C. C. and Lockwood, F. C., Modeling of Ash Deposition in Pulverized Coal-Fired Applications, Prog. Energy Combust. Sci., vol. 25, pp. 117-132, 1999.
  18. Lockwood, F. C., Salooja, A. P., and Syed, S. A., A Prediction Method for Coal-Fired Furnaces, Combust. Flame, vol. 38, pp. 1-15, 1980.
  19. Mengüç, M. P. and Viskanta, R., A Sensitivity Analysis for Radiation Heat Transfer in Pulverized Coal - Fired Furnaces, Combust. Sci. Technol., vol. 51, pp. 51-74, 1987.
  20. Mengüç, M. P. and Viskanta, R., Effect of Fly-Ash Particles on Spectral and Total Radiational Blockage, Combust. Sci. Technol., vol. 60, pp. 95-115, 1988.
  21. Sami, M., Annamalai, K., and Wooldrige, M., Co-firing of Coal and Biomass Fuel Blends, Prog. Energy Combust. Sci., vol. 27, pp. 171-214, 2001.
  22. Sirignano, W. A., Fuel Droplet Vaporization and Spray Combustion Theory, Prog. Energy Combust. Sci., vol. 9, pp. 291-322, 1983.
  23. Sirignano, W. A., Fluid Dynamics and Transport of Droplets and Sprays, Cambridge University Press, Cambridge, England, 1999.
  24. Smoot, L. D. and Smith, J. P., Coal Combustion and Gasification, Plenum Press, New York, 1985.
  25. Tsujii, H., Gupta, A. K., Hasegawa, T., Katsuki, M., Kishimoto, K., and Morita, M., High Temperature Air Combustion, CRC Press, Boca Raton, 2003.
  26. Turns, S. R., An Introduction to Combustion, Second Edition, McGraw-Hill, New York, 2000.
  27. Williams, F. A., Combustion Theory: The Fundamental Theory of Chemically Reacting Flow System, Second Edition, Benjamin/Cummings Publishing, Menlo Park, CA, 1985.
  28. Williams, A., Pourkashnian, M. Jones, J. M., and Skorupska, N., The Combustion and Gusification of Coal, Taylor and Francis, London, 2000.
  29. Yin, C., Caillat, S., Harion, J.-L., Baudain, B., and Perez, E., Investigation of the Flow, Combustion, Heat Transfer, and Emissions from a 609 MW Utility Tangentially Fired Pulverized-Coal Boiler, Fuel, vol. 81, pp. 997-1006, 2002.
  30. Yu, J. J. Baek, S. W., and Kang, S. J., Modeling of Pulverized Combustion with Nongray Gas Radiation Effects, Combust. Sci. Technol., vol. 166, pp. 151-175, 2001.
  31. Zheng, C., Liu, Z., Duan, X., and Mi, J., Numerical and Experimental Investigation on the Performance of a 300 MW Pulverized Coal Furnace, Proc. Combust. Inst., vol. 29, pp. 811-818, 2002.
Nombre de vues : 33251 Article ajouté : 7 September 2010 Dernière modification de l'article : 30 May 2011 © Copyright 2010-2021 Retour en haut de page
Index A-Z Auteur / Rédacteurs Carte sémantique Galerie visuelle Contribuez Guest