Guide alphabétique, de la thermodynamique, amplification de chaleur, transfert de masse, et dynamique des fluides
Français English Русский 中文 Português Español Deutsch À propos Comité de rédaction Contactez-nous Accès Begell House
View in Semantic Map View in A-Z Index


DETERMINATION OF MATERIAL PROPERTIES: OPTICAL TOMOGRAPHY APPLICATIONS

A. Charette, O. Balima, J. Boulanger, and D. Marceau

1. INTRODUCTION

During the last decade, increasing developments of new optical techniques of clinical controls and medical diagnostics have been achieved. These developments were made possible thanks to advances in the theoretical understanding of the interaction between light and optical properties of semitransparent media such as human tissues. On the other hand, the improvement of light-detection systems as well as light sources that irradiate the tissues was necessary in order to put these techniques into practice. One of the most spectacular of these advances is the possibility to acquire a picture of the spatial distribution of the optical properties of different parts of the body from measurements at the surface. This technology of imaging is known as optical tomography (Arridge, 1999). It consists of identifying the parameters of a numerical model ...

Vous devez souscrire un abonnement pour afficher le texte intégral de l'article.

Si vous êtes déjà abonné (e), veuillez vous identifier ici
Si vous souhaitez vous abonner à THERMOPEDIA™, veuillez en faire la demande ici.

References

  1. Arridge, S. R., Optical Tomography in Medical Imaging, Inverse Prob., vol. 15, pp. R41-R93, 1999.
  2. Balima, O., Favennec, Y., and Petit, D., Model Reduction on Heat Conduction with Radiative Boundary Conditions Using the Modal Identification Method, Numer. Heat Transfer Part B, vol. 52, pp. 107-130, 2007.
  3. Balima, O., Charette, A., and Marceau, D., Comparison of Light Transport Models in View of Optical Tomography Applications, J. Comput. Appl. Math., vol. 234, no. 7, pp. 2259–2271, 2010a.
  4. Balima, O., Pierre, T., Charette, A., and Marceau, D., A Least Square Finite Element Formulation of the Collimated Irradiation in Frequency Domain for Optical Tomography Applications, J. Quant. Spectrosc. Radiat. Transfer, vol. 111, no. 2, pp. 280-286, 2010b.
  5. Balima, O., Boulanger, J., Charette, A., and Marceau, D., New developments in frequency domain Optical tomography. Part I, Part II, J. Quant. Spectrosc. Radiat. Transfer, vol. 112, no. 7, pp. 1229–1240, 2011.
  6. Charette, A., Boulanger, J., and Kim, H., Optical Tomography as an Inverse Radiation Problem, Fifth International Symposium on Radiation Transfer, Bodrum, Turkey, 2007.
  7. Charette, A., Boulanger, J., and Kim, H. K., An Overview on Recent Radiation Transport Algorithm Development for Optical Tomography Imaging, J. Quant. Spectrosc. Radiat. Transfer, vol. 109, no. 17-18, pp. 2743-2766, 2008.
  8. Favennec, Y., Girault, M., and Petit, D., The Adjoint Method Coupled with the Modal Identification Method for Nonlinear Model Reduction, Inverse Prob. Sci. Eng., vol. 14, pp. 153-170, 2006.
  9. Hielscher, A., Alcouffe, R., and Barbour, R., Comparison of Finite Difference Transport and Diffusion Calculations for Photon Migration in Homogeneous and Heterogeneous Tissues, Phys. Med. Biol., vol. 43, pp. 1285-1302, 1998.
  10. Klose, A., Netz, U., Beuthan, J., and Hielscher, A., Optical Tomography Using the Time-Independent Equation of Radiative Transfer--Part 1: Forward Model, J. Quant. Spectrosc. Radiat. Transfer, vol. 72, pp. 691-713, 2002.
  11. Liu, D. and Nocedal, J., On the Limited Memory BFGS Method for Large Scale Optimization, Math. Prog., vol. 45, no. 3, pp. 503-528, 1989.
  12. Modest, M. F., Radiative Heat Transfer, Mechanical Engineering, McGraw Hill, New York, 1993.
Nombre de vues : 38039 Article ajouté : 7 September 2010 Dernière modification de l'article : 30 May 2011 © Copyright 2010-3921 Retour en haut de page
Index A-Z Auteur / Rédacteurs Carte sémantique Galerie visuelle Contribuez Guest