Afficher dans l'index de A à Z
Nombre de vues :
25316

The Dirac Delta Function δ(x - a) is an impulsive function defined as zero for every value of x, except for the point x ≠ a where it jumps to an infinitely large value. However, its graph encloses a unit area. It can be regarded as an idealization of a unit impulse. We define δ(x - a) through the following two properties:

This function has the following important property: for any continuous function f(x),

that is, δ(x - a) applied to f(x) detects its value at x = a.

We can heuristically show the validity of this property using the following argument: Let us approximate δ(x - a) through the function δε(x - a), such that:

which approaches δ(x - a) as ε tends to zero.

Clearly, the area covered by δε(x - a) is equal to one;

The function δε(x - a) an approximation to the Delta function.

Figure 1. The function δε(x - a) an approximation to the Delta function.

Furthermore, let F(x) be the primitive of f(x) (that is F'(x) = f(x)), then:

as ε goes to zero, the last expression defines the derivative of F(x) at x = a, which is precisely f(a).

The function δ(x - a) has a number of important applications in mathematical physics, in particular the solution of differential equations. In fact, it belongs to a class of generalized functions called distributions.

REFERENCES

Schwartz, L. (1973) Théorie des Distributions, Hermann, Paris.

Les références

  1. Schwartz, L. (1973) Théorie des Distributions, Hermann, Paris.
Retour en haut de page © Copyright 2008-2024