ThermodynamicsのA-Zガイド、熱&アンプ、質量移動、流体工学
English Русский 中文 Português Español Français Deutsch 概要 編集委員会 連絡先 アクセス Begell House
View in Semantic Map View in A-Z Index

The vorticity, ω, of a flow is a vector quantity which is a measure of the rotation of a flow. It is defined by the relation:

It should be emphasized that vorticity corresponds to changing orientation of microscopic fluid elements, rather than just movement in a curved path. A useful equation in fluid mechanics is the vorticity transport equation. For an incompressible fluid in a system with conservative body forces, this equation is:

where D is kinematic viscosity.

The first term on the right represents the interaction of vorticity with velocity gradients and the second term represents viscous diffusion through the fluid. The concept of vorticity is discussed further in Massey (1989) and Tritton (1977).

REFERENCES

Massey, B. S. (1989) Mechanics of Fluids. Van Nostrant Reinhold, London.

Tritton, D. J. (1977) Physical Fluid Dynamics. Van Nostrand Reinhold, Wokinghan, UK. Leading to: Vortices

References

  1. Massey, B. S. (1989) Mechanics of Fluids. Van Nostrant Reinhold, London.
  2. Tritton, D. J. (1977) Physical Fluid Dynamics. Van Nostrand Reinhold, Wokinghan, UK. Leading to: Vortices
表示回数: 18291 記事追加日: 2 February 2011 記事最終修正日: 16 March 2011 ©著作権 2010-2021 トップへ戻る
A-Z索引 著者/編集者 意味マップ ビジュアルギャラリー 寄稿 Guest