ThermodynamicsのA-Zガイド、熱&アンプ、質量移動、流体工学
English Русский 中文 Português Español Français Deutsch 概要 編集委員会 連絡先 アクセス Begell House
View in Semantic Map View in A-Z Index


In many natural phenomena, materials processing, and manufactural situations, gas bubbles can form in liquid and solid phases. Their presence affects the thermophysical and radiative properties of the two-phase system and, hence, the transport phenomena. The glass melting process in industrial furnaces where bubbles are generated by chemical reactions is a typical example. In the last decade, several studies have focused on the radiative properties of typical glass foams. Fedorov and Viskanta (2000), Fedorov and Pilon (2002), and Pilon and Viskanta (2003) have been interested in low-density glass foam (about 10-30%). Rousseau et al. (2007a,b), Baillis et al. (2004), Dombrovsky et al. (2005), and Randri ...

記事を全文表示するには登録しなければなりません。

既に登録されている場合、ここからログインして下さい
THERMOPEDIA™ への登録を希望される場合、ここからリクエストして下さい。

References

  1. Baillis, D., Pilon, L., Randrianalisoa, H., Gomez, R., and Viskanta, R., Measurements of radiation characteristics of fused quartz containing bubbles, J. Opt. Soc. Am. A, vol. 21, no. 1, pp. 149-159, 2004.
  2. Baillis-Doermann, D. and Sacadura, J.-F., Thermal radiation properties of dispersed media: Theoretical prediction and experimental characterization, J. Quant. Spectrosc. Radiat. Transf., vol. 67, no. 5, pp. 327-363, 2000.
  3. Dombrovsky L. A., and Baillis, D., Thermal Radiation in Disperse Systems: An Engineering Approach, Redding, CT: Begell House, 2010.
  4. Dombrovsky, L., Randrianalisoa, J., Baillis, D., and Pilon, L., Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles, Appl. Opt., vol. 44, no. 33, pp. 7021-7031, 2005.
  5. Dombrovsky, L., Randrianalisoa, J., and Baillis, D., Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements, J. Opt. Soc. Am. A, vol. 23, no. 1, pp. 91-98, 2006.
  6. Fedorov, A. G. and Viskanta, L., Radiation characteristics of glass foam, J. Am. Ceram. Soc., vol. 83, no. 11, pp. 2769-76, 2000.
  7. Fedorov, A. G. and Pilon, L., Glass foam: Formation, transport properties, and heat, mass, and radiation transfer, J. Non-Cryst. Solids, vol. 311, no. 2, pp. 154-173, 2002.
  8. Pilon, L. and Viskanta, R., Radiation characteristics of glass containing bubbles, J. Am. Ceram. Soc., vol. 86, no. 8, pp. 1313-1320, 2003.
  9. Randrianalisoa, J. and Baillis, D., Radiative transfer in dispersed media: Comparison between homogeneous phase and multiphase approaches, J. Heat Transfer, vol. 132, no. 2, pp. 023405.1-023405.11, 2010a.
  10. Randrianalisoa, J. and Baillis, D., Radiative properties of densely packed spheres in semitransparent media: A new geometric optics approach, J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 10, pp. 1372-1388, 2010b.
  11. Randrianalisoa, J., Baillis, D., and Pilon, L., Modeling radiation characteristics of semitransparent media containing bubbles or particles, J. Opt. Soc. Am. A, vol. 23, no. 7, pp. 1645-1656, 2006a.
  12. Randrianalisoa, J., Baillis, D., and Pilon, L., Improved inverse method for radiative characteristics of closed-cell absorbing porous media, J. Thermophys. Heat Transfer, vol. 20, no. 4, pp. 871-883, 2006b.
  13. Rousseau, B., Canizares, A., De Sousa Meneses, D., Matzen, G., Echegut, P., Di Michiel, M., and Thovert, J. F., Direct simulation of the high temperature optical behaviour of a porous medium based on a CT image, Colloids Surf., A, vol. 300, no. 1-2, pp. 162-168, 2007a.
  14. Rousseau, B., De Sousa Meneses, D., Echegut, P., Di Michiel, M., and Thovert, J. F., Prediction of the thermal radiative properties of an X-ray μ-tomographied porous silica glass, Appl. Opt., vol. 46, no. 20, pp. 4266-4276, 2007b.
表示回数: 33002 記事追加日: 7 September 2010 記事最終修正日: 17 January 2012 ©著作権 2010-2021 トップへ戻る
A-Z索引 著者/編集者 意味マップ ビジュアルギャラリー 寄稿