ThermodynamicsのA-Zガイド、熱&アンプ、質量移動、流体工学
English Русский 中文 Português Español Français Deutsch 概要 編集委員会 連絡先 アクセス Begell House
View in A-Z Index

Bessel’s series is the expansion of a function f(x) square integrable and weight integrable in the interval (0, a) into a series in terms of Bessel Functions of order λ, Jλ(μkax), where k = 1 ÷ ∞

(1)

Here, μk are the positive roots of Bessel’s function Jλ arranged in an increasing order (λ > -½). The coefficients of a series have the form:

(2)

A system of Bessel’s functions is orthogonal to weight x and is complete on the interval (0, a). This means that a sequence of partial sums of the series converge on the interval (0, a) in a root-mean-square (with weight x) to the function f(x).

The orthogonality relationships for the Bessel function have the following form:

(3)

A Bessel’s series for a function f(x) can be obtained by expanding a function f(x) into a Fourier series with respect to an orthogonal system Jλkx/a); k = 1 ÷ ∞, which makes it possible to transfer onto the Fourier-Bessel series the results known for the Fourier series from orthogonal functions.

表示回数: 17383 記事追加日: 2 February 2011 記事最終修正日: 10 February 2011 ©著作権 2010-2022 トップへ戻る
A-Z索引 著者/編集者 意味マップ ビジュアルギャラリー 寄稿 Guest