Inscrição na biblioteca:

The problem of melt-water interaction is especially important for analysis of hypothetical severe accidents in light water nuclear reactors. A severe accident involves melting of the core and possible subsequent interaction of the core melt (UO2-ZrO2 composition) with water. The fuel-coolant interaction (FCI) may lead to steam explosion with a significant part of the melt thermal energy converted into the mechanical energy of the detonation wave (Corradini et al., 1988; Fletcher and Anderson, 1990; Fletche ...

Você precisa de uma assinatura para acessar o conteúdo completo deste artigo.

Se você já tem a inscrição, por favor, faça login aqui
Se você quer se inscrever na THERMOPEDIA™ faça sua solicitação aqui.


  1. Abe, Y., Matsuo, E., Arai, T., Nariai, H., Chitose, K., Koyama, K., and Itoh, K., Fragmentation Behavior during Molten Material and Coolant Interactions, Nucl. Eng. Des., vol. 236, no. 19-21, pp. 1668-1681, 2006.
  2. Akopov, F. A., Val’ano, G. E., Vorob’ev, A. Yu., Mineev, V. N., Petrov, V. A., Chernyshev, A. P., and Chernyshev, G. P., Thermal Radiative Properties of Ceramic of Cubic ZrO2 Stabilized with Y2O3 at High Temperatures, High Temp., vol. 39, no. 2, pp. 244-254, 2001.
  3. Alipchenkov, V. M., Dombrovsky, L. A., and Zaichik, L. I., The Growth and Stability of Vapor Film on the Surface of a Hot Spherical Particle, High Temp., vol. 40, no. 1, pp. 100-104, 2002 .
  4. Anderson, E. E., Radiative Heat Transfer in Molten UO2 Based on the Rosseland Diffusion Method, Nucl. Tech., vol. 30, pp. 65-70, 1976.
  5. Berthoud, G., Vapor Explosions, Ann. Rev. Fluid Mech., vol. 32, pp. 573-611, 2000.
  6. Bober, M., Singer, J., and Wagner, K., Determination of the Optical Constants of Liquid UO2 from Reflectivity Measurements, Proc. of 8th Symp. Thermophys. Prop., Gaithersburg, MD, vol. II, ASME, pp. 234-244, 1981.
  7. Bober, M., Singer, J., and Wagner, K., Bestimmung der Optischen Konstanten von Geschmolzenen Kernbrennstoffen, J. Nucl. Mater., vol. 124, pp. 120-128, 1984.
  8. Bürger, M., Particulate Debris Formation by Breakup of Melt Jets: Main Objectives and Solution Perspectives, Nucl. Eng. Des., vol. 236, no. 19-21, pp. 1991-1997, 2006.
  9. Cabannes, F. and Billard, D., Measurement of Infrared Absorption of Some Oxides in Connection with the Radiative Transfer in Porous and Fibrous Materials, Int. J. Thermophys., vol. 8, no. 1, pp. 97-118, 1987.
  10. Corradini, M. L., Kim, B. J., and Oh, M. D., Vapor Explosion in Light Water Reactors: A Review of Theory and Modeling, Prog. Nucl. Energy, vol. 22, no. 1, pp. 1-117, 1988.
  11. Dinh, T. N., Material Property Effect in Steam Explosion Energetics: Revisited, Proc. of 12th Int. Topical Meeting Nucl. Reactor Therm. Hydraulics (NURETH-12), Pittsburg, PA, Sept. 30-Oct. 4, Amer. Nucl. Soc., Paper No. 150, 2007.
  12. Dinh, T. N., Bui, V. A., Nourgaliev, R. R., Green, J. A., and Sehgal, B. R., Experimental and Analytical Studies of Melt Jet-Coolant Interactions: A Synthesis, Nucl. Eng. Des., vol. 189, no. 1-3, pp. 299-327, 1999a.
  13. Dinh, T. N., Dinh, A. T., Nourgaliev, R. R., and Sehgal, B. R., Investigation of Film Boiling Thermal Hydraulics Under FCI Conditions: Results of Analyses and Numerical Study, Nucl. Eng. Des., vol. 189, no. 1-3, 251-272, 1999b.
  14. Dombrovsky, L. A., Possibility of Determining the Disperse Composition of a Two-Phase Flow from the Small-Angle Light Scattering, High Temp., vol. 20, no. 3, pp. 472-479, 1982.
  15. Dombrovsky, L. A., Radiation Heat Transfer in Disperse Systems, Begell House, New York and Redding, CT, 1996.
  16. Dombrovsky, L. A., Radiation Heat Transfer from a Spherical Particle via Vapor Shell to the Surrounding Liquid, High Temp., vol. 37, no. 6, pp. 912-919, 1999.
  17. Dombrovsky, L. A., Radiation Heat Transfer from a Hot Particle to Ambient Water through the Vapor Layer, Int. J. Heat Mass Transfer, vol. 43, no. 13, pp. 2405-2414, 2000.
  18. Dombrovsky, L. A., A Spectral Model of Absorption and Scattering of Thermal Radiation by Droplets of Diesel Fuel, High Temp., vol. 40, no. 2, pp. 242-248, 2002.
  19. Dombrovsky, L. A., Radiation Transfer through a Vapour Gap under Conditions of Film Boiling of Liquid, High Temp., vol. 41, no. 6, pp. 819-824, 2003.
  20. Dombrovsky, L. A., Thermal Radiation of Nonisothermal Particles in Combined Heat Transfer Problems (dedication lecture), Proc. of 5th Int. Symp. Radiat. Transfer, Bodrum, Turkey, June 17-22, Begell House, 2007a.
  21. Dombrovsky, L. A., An Estimate of Stability of Large Solidifying Droplets in Fuel-Coolant Interaction, Int. J. Heat Mass Transfer, vol. 50, no. 19-20, pp. 3832-3836, 2007b.
  22. Dombrovsky, L. A., Davydov, M. V., and Kudinov, P., Thermal Radiation Modeling in Numerical Simulation of Melt-Coolant Interaction, Comput. Thermal Sci., vol. 1, no. 1, pp. 1-35, 2009.
  23. Dombrovsky, L. A. and Dinh, T. N., The Effect of Thermal Radiation on the Solidification Dynamics of Metal Oxide Melt Droplets, Nucl. Eng. Des., vol. 238, no. 6, pp. 1421-1429, 2008.
  24. Dombrovsky, L. A. and Lipiński, W., Transient Temperature and Thermal Stress Profiles in Semi-Transparent Particles Under High-Flux Irradiation, Int. J. Heat Mass Transfer, vol. 50, no. 11-12, pp. 2117-2123, 2007.
  25. Dombrovsky, L. A. and Sazhin, S. S., A Parabolic Temperature Profile Model for Heating of Droplets, ASME J. Heat Transfer, vol. 125, no. 3, pp. 535-537, 2003a.
  26. Dombrovsky, L. A. and Sazhin, S. S., A Simplified Nonisothermal Model for Droplet Heating and Evaporation, Int. Comm. Heat Mass Transfer, vol. 30, no. 6, pp. 787-796, 2003b.
  27. Dombrovsky, L. A., Tagne, H. K., Baillis, D., and Gremillard, L., Near-Infrared Radiative Properties of Porous Zirconia Ceramics, Infrared Phys. Tech., vol. 51, no. 1, pp. 44-53, 2007.
  28. Dombrovsky, L. A. and Zaichik, L. I., The Dynamics of Vapor Void Under Conditions of Thermal Interaction of a Hot Spherical Particle with Ambient Water, High Temp., vol. 38, no. 6, pp. 938-947, 2000.
  29. Fink, J. K., Thermophysical Properties of Uranium Dioxide (Review), J. Nucl. Mater., vol. 279, no. 1, pp. 1-18, 2000.
  30. Fletcher, D. F., The Particle Size Distribution of Solidified Melt Debris from Molten Fuel-Coolant Interaction Experiments, Nucl. Eng. Des., vol. 105, no. 3, pp. 313-319, 1988.
  31. Fletcher, D. F., Steam Explosion Triggering: A Review of Theoretical and Experimental Investigations, Nucl. Eng. Des., vol. 155, no. 1-2, pp. 27-36, 1995.
  32. Fletcher, D. F., Radiation Absorption During Premixing, Nucl. Eng. Des., vol. 189, no. 1-3, pp. 435-440, 1999.
  33. Fletcher, D. F. and Anderson, R. P., A Review of Pressure-Induced Propagation Models of the Vapor Explosion Process, Prog. Nucl. Energy, vol. 23, no. 2, pp. 137-179, 1990.
  34. Harding, J. H., Martin, D. G., and Potter, P. E., Thermophysical and Thermochemical Properties of Fast Reactor Materials, Commiss. Eur. Commun. Report EUR 12402 EN, 1989.
  35. Huhtiniemi, I., Magallon, D., and Hohmann, H., Results of Recent KROTOS FCI Tests: Alumina Versus Corium Melts, Nucl. Eng. Des., vol. 189, no. 1-3, pp. 379-389, 1999.
  36. Lingart, Yu. K., Petrov, V. A., and Tikhonova, N. A., Optical Properties of Synthetic Sapphire at High Temperatures. II. Properties of Monocrystal in Opacity Region and Melt Properties, High Temp., vol. 20, no. 6, pp. 1085-1092, 1982.
  37. Magallon, D., Characteristics of Corium Debris Bed Generated in Large-Scale Fuel-Coolant Interaction Experiments, Nucl. Eng. Des., vol. 236, no. 19-21, pp. 1998-2009, 2006.
  38. Moriyama, K., Nakamura, H., and Maruyama, Y., Analytical Tool Development for Coarse Break-Up of a Molten Jet in a Deep Water Pool, Nucl. Eng. Des., vol. 236, no. 19-21, pp. 2010-2025, 2006.
  39. Mularz, E. J. and Yuen, M. C., An Experimental Investigation of Radiative Properties of Aluminium Oxide Particles, J. Quant. Spectr. Radiat. Transfer, vol. 12, no. 11, pp. 1553-1568, 1972.
  40. Petrov, V. A. and Chernyshev, A. P., Thermal-Radiation Properties of Zirconia when Heated by Laser Radiation up to Temperature of High-Rate Vaporization, High Temp., vol. 37, no. 1, pp. 58-66, 1999.
  41. Pohlner, G., Vujic, Z., Bürger, M., and Lohnert, G., Simulation of Melt Jet Breakup and Debris Bed Formation in Water Pools with IKEJET/IKEMIX, Nucl. Eng. Des., vol. 236, no. 19-21, pp. 2026-2048, 2006.
  42. Rubtsov, N. A., Emelianov, A. A., and Ponomarev, N. N., Investigation of Fused Aluminium Oxide Absorption Index at High Temperatures, High Temp., vol. 22, no. 2, pp. 294-298, 1984 (in Russian).
  43. Ruello, P., Becker, K. D., Ulrich, K., Desgranges, L., Petot, C., and Petot-Ervas, G., Thermal Variation of the Optical Absorption of UO2: Determination of the Small Polaron Self-Energy, J. Nucl. Mater., vol. 328, no. 1, pp. 46-54, 2004.
  44. Theofanous, T. G., The Study of Steam Explosions in Nuclear Systems, Nucl. Eng. Des., vol. 155, no. 1-2, pp. 1-26, 1995.
  45. Tseng, C. C. and Viskanta, R., On the Hypothesis of Thermal Phase Change, Int. Comm. Heat Mass Transfer, vol. 32, no. 10, pp. 1267-1272, 2005.
  46. Wood, D. L. and Nassau, K., Refractive Index of Cubic Zirconia Stabilized with Yttria, Appl. Optics, vol. 21, no. 16, pp. 2978-2981, 1982.
Número de visualizações: 28952 Artigo adicionado: 7 September 2010 Última modificação do artigo: 27 June 2011 © Copyright 2010-2021 Voltar para o topo