Inscrição na biblioteca:


Leading to: Radiative transfer for coupled atmosphere and ocean systems: the discrete ordinate method

A beam of radiation propagating in a turbid medium can be scattered, absorbed, or re-emitted. For simplicity, the inelastic process that involves radiation energy transfer from one wavelength to others is not considered in this article. The radiative transfer equation (RTE) is introduced to describe these interaction processes phenomenologically (Chandrasekhar, 1960; Preisendorfer, 1965). The derivation of the RTE from the classical Maxwell equations has also been published (Mishchenko et al., 2006). The RTE has important applications in many fields (Kattawar, 1991; Dombrovsky, 1996; Liou, 2002; Marshak and Davis, 2005; Modest, 2003). In this article, we are particularly interested in the radiative trans ...

Você precisa de uma assinatura para acessar o conteúdo completo deste artigo.

Se você já tem a inscrição, por favor, faça login aqui
Se você quer se inscrever na THERMOPEDIA™ faça sua solicitação aqui.


  1. Chandrasekhar, S., Radiative Transfer, Dover, New York, 1960.
  2. Cox, C. and Munk, W., Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter, J. Opt. Soc. Am., vol. 44, pp. 838-850, 1954.
  3. Dombrovsky, L. A., Radiation Heat Transfer in Disperse Systems, Begell House, New York and Redding, CT, 1996.
  4. Evans, K. F., The Spherical Harmonic Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer, J. Atmos. Sci., vol. 55, pp. 429-446, 1998.
  5. Evans, K. F., SHDOMPPDA: A Radiative Transfer Model for Cloudy Sky Data Assimilation, J. Atmos. Sci., vol. 64, pp. 3858-3868, 2007.
  6. Garcia, R. D. M. and Siewert, C. E., A Generalized Spherical Harmonics Solution for Radiative Transfer Models that Include Polarization Effects, J. Quant. Spectrosc. Radiat. Transfer, vol. 36, pp. 401-423, 1986.
  7. Garcia, R. D. M. and Siewert, C. E., The FN Method for Radiative Transfer Models that Include Polarization Effects, J. Quant. Spectrosc. Radiat. Transfer, vol. 41, pp. 117-145, 1989.
  8. Gautsch, W., Error Function and Fresnel Integrals, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematics Tables, vol. 55, Abramowitz, M. and Stegun, I. A., (eds.), National Bureau of Standards; Washington, pp. 295-329, 1964.
  9. Jin, Z., Charlock, T. P., Rutledge, K., Stamnes, K., and Wang, Y., Analytical Solution of Radiative Transfer in the Coupled Atmosphere-Ocean System with a Rough Surface, Appl. Opt., vol. 4, pp. 7443-7455, 2006.
  10. Kattawar, G. W., Multiple Scattering in Plane Parallel Atmospheres and Oceans: Techniques, SPIE Press, Bellingham, 1991.
  11. Kourganoff, V., Basic Methods in Transfer Problems, Clarendon Press, London, 1952.
  12. Lenoble, J., Herman, M., Deuz&eakute;, J. L., Lafrance, B., Santer, R., and Tanr&eakute;, D., A Successive Order of Scattering Code for Solving the Vector Equation of Transfer in the Earth’s Atmosphere with Aerosols, J. Quant. Spectrosc. Radiat. Transfer, vol. 107, pp. 479-507, 2007.
  13. Liou, K. N., An Introduction to Atmospheric Radiation, 2nd ed., Academic Press, New York, 2002.
  14. Marshak, A. and Davis, A. B. (eds.), 3D Radiative Transfer in Cloudy Atmospheres, Springer, New York, 2005.
  15. Mishchenko, M. I. and Travis, L. D., Satellite Retrieval of Aerosol Properties over the Ocean Using Polarization as Well as Intensity of Reflected Sunlight, J. Geophys. Res., vol. 102, pp. 16989-17013, 1997.
  16. Mishchenko, M. I., Travis, L. D., and Lacis, A. A., Multiple Scattering of Light by Particles, Cambridge University Press, New York, 2006.
  17. Mobley, C. D., Gentili, B., Gordon, H. R., Jin, Z., Kattawar, G. W., Morel, A., Reinersman, P., Stamnes, K., and Stavn, R.H., Comparison of Numerical Models for Computing Underwater Light Fields, Appl. Opt., vol. 32, pp. 7484-7504, 1993.
  18. Mobley, C. D., Light and Water: Radiative Transfer in Natural Waters, Academic Press, New York, 1994.
  19. Modest, M. F., Radiative Heat Transfer, 2. ed., Academic Press, New York, 2003.
  20. Preisendorfer, R. W., Radiative Transfer on Discrete Spaces, Pergamon Press, Oxford, 1965.
  21. Sancer, M. I., Shadow-Corrected Electromagnetic Scattering from a Randomly Rough Surface, IEEE Trans. Antennas Propagat., 17, pp. 577-585, 1969.
  22. Smith, B. G., Geometrical Shadowing of a Random Rough Surface, IEEE Trans. Antennas Propagat., vol. 15, pp. 668-671, 1967.
  23. Thomas, G. E. and Stamnes, K., Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, Cambridge, UK, 1999.
  24. Wauben, W. M. F. and Hovenier, J. W., Polarized Radiation of an Atmosphere Containing Randomly Oriented Spheroids, J. Quant. Spectrosc. Radiat. Transfer, vol. 47, pp. 491-504, 1992.
  25. Zege, E. P., Katsev, I. L., and Polonsky, I. N., Multicomponent Approach to Light Propagation in Clouds and Mists, Appl. Opt., vol. 32, pp. 2803-2812, 1993.
  26. Zege, E. P. and Chaikovskaya, L. I., New Approach to the Polarized Radiative Transfer Problem, J. Quant. Spectrosc. Radiat. Transfer, vol. 55, pp. 19-31, 1996.
  27. Zhai, P., Hu, Y., Chowdhary, J., Trepte, C. R., Lucker, P. L., and Josset, D. B., A Vector Radiative Transfer Model for Coupled Atmosphere and Ocean Systems with a Rough Interface, J. Quant. Spectrosc. Radiat. Transfer, vol. 111, 1025-1040, 2010.
Número de visualizações: 39157 Artigo adicionado: 7 September 2010 Última modificação do artigo: 2 August 2012 © Copyright 2010-2021 Voltar para o topo