Inscrição na biblioteca:
Guest


RAY EFFECTS AND FALSE SCATTERING

Following from: Discrete ordinates and finite volume methods

The discrete ordinates method (DOM) and the finite volume method (FVM) have been widely applied in the last two decades to the solution of radiative heat transfer problems, owing to their good compromise between accuracy, flexibility, and moderate computational requirements. They can be applied to nonisothermal, nonhomogeneous, anisotropically scattering, and nongray media in complex geometries. However, several limitations of these methods have also been identified. Among them, ray effects and false scattering are perhaps the two most important ones. These two problems have been discussed, e.g., in Chai et al. (1993), Raithby (1999), and Coelho (2002a), and several proposals have been made to overcome them.

False Scattering

False scattering, also referred to in the literatu ...

Você precisa de uma assinatura para acessar o conteúdo completo deste artigo.

Se você já tem a inscrição, por favor, faça login aqui
Se você quer se inscrever na THERMOPEDIA™ faça sua solicitação aqui.

References

  1. Briggs, L. L., Miller, Jr., W. F., and Lewis, E. E., Ray-Effect Mitigation in Discrete Ordinate-Like Angular Finite Element Approximations in Neutron Transport, Nucl. Sci. Eng., vol. 57, pp. 205−217, 1975.
  2. Chai, J. C., Lee, H. S., and Patankar, S. V., Ray Effect and False Scattering in the Discrete Ordinates Method, Numer. Heat Transfer, Part B, vol. 24, pp. 373−389, 1993.
  3. Coelho, P. J., The Role of Ray Effects and False Scattering on the Accuracy of the Standard and Modified Discrete Ordinates Methods, J. Quant. Spectrosc. Radiat. Transfer, vol. 73, pp. 231−238, 2002a.
  4. Coelho, P. J., Bounded Skew High-Order Resolution Schemes for the Discrete Ordinates Method, J. Comput. Phys., vol. 175, pp. 412−437, 2002b.
  5. Coelho, P. J., A Comparison of Spatial Discretization Schemes for Differential Solution Methods of the Radiative Transfer Equation, J. Quant. Spectrosc. Radiat. Transfer, vol. 109, no. 2, pp. 189−200, 2008.
  6. Crosbie, A. L. and Schrenker, R. G., Radiative Transfer in a Two-Dimensional Rectangular Medium Exposed to Diffuse Radiation, J. Quant. Spectrosc. Radiat. Transfer, vol. 31, pp. 339−372, 1984.
  7. Lathrop, K. D., Ray Effects in Discrete Ordinates Equations, Nucl. Sci. Eng., vol. 32, pp. 357−369, 1968.
  8. Lathrop, K. D., Remedies for Ray Effects, Nucl. Sci. Eng., vol. 45, pp. 255−268, 1971.
  9. Li, H.-S., Flamant, G., and Lu, J.-D., Reduction of False Scattering of the Discrete Ordinates Method, J. Heat Transfer, vol. 124, pp. 837−844, 2002.
  10. Li, H.-S., Flamant, G., and Lu, J.-D., Mitigation of Ray Effects in the Discrete Ordinates Method, Numer. Heat Transfer, Part B, vol. 43, pp. 445−466, 2003.
  11. Li, H.-S., Reduction of False Scattering in Arbitrarily Specified Discrete Directions of the Discrete Ordinates Method, J. Quant. Spectrosc. Radiat. Transfer, vol. 86, pp. 215−222, 2004.
  12. Morel, J. E., Wareing, T. A., Lowrie, R. B., and Parsons, D. K., Analysis of Ray-Effect Mitigation Techniques, Nucl. Sci. Eng., vol. 144, pp. 1−22, 2003.
  13. Raithby, G. D., Evaluation of Discretization Errors in Finite-Volume Radiant Heat Transfer Predictions, Numer. Heat Transfer, Part B, vol. 36, pp. 241−264, 1999.
  14. Ramankutty, M. A. and Crosbie, A. L., Modified Discrete Ordinates Solution of Radiative Transfer in Two-Dimensional Rectangular Enclosures, J. Quant. Spectrosc. Radiat. Transfer, vol. 57, pp. 107−140, 1997.
  15. Tan, H.-P., Zhang, H.-C., and Zhen, B., Estimation of Ray Effect and False Scattering in Approximate Solution Method for Thermal Radiative Transfer Equation, Numer. Heat Transfer, Part A, vol. 46, pp. 807−829, 2004.
  16. Zhang, H.-C. and Tan, H.-P., Evaluation of Numerical Scattering in the Finite volume Method for Solving Radiative Transfer Equation by a Central Laser Incidence Model, J. Quant. Spectrosc. Radiat. Transfer, vol. 110, pp. 1965−1977, 2009.
Número de visualizações: 22812 Artigo adicionado: 2 August 2012 Última modificação do artigo: 3 October 2012 © Copyright 2010-2021 Voltar para o topo