Руководство по Термодинамике, Гидродинамике, Тепло- и Массообмену
Русский English 中文 Português Español Français Deutsch О нас Редакция Контакты Доступ Begell House
Смотреть в алфавитном индексе
Количество просмотров:
19924

The Dirac Delta Function δ(x - a) is an impulsive function defined as zero for every value of x, except for the point x ≠ a where it jumps to an infinitely large value. However, its graph encloses a unit area. It can be regarded as an idealization of a unit impulse. We define δ(x - a) through the following two properties:

This function has the following important property: for any continuous function f(x),

that is, δ(x - a) applied to f(x) detects its value at x = a.

We can heuristically show the validity of this property using the following argument: Let us approximate δ(x - a) through the function δε(x - a), such that:

which approaches δ(x - a) as ε tends to zero.

Clearly, the area covered by δε(x - a) is equal to one;

The function δε(x - a) an approximation to the Delta function.

Figure 1. The function δε(x - a) an approximation to the Delta function.

Furthermore, let F(x) be the primitive of f(x) (that is F'(x) = f(x)), then:

as ε goes to zero, the last expression defines the derivative of F(x) at x = a, which is precisely f(a).

The function δ(x - a) has a number of important applications in mathematical physics, in particular the solution of differential equations. In fact, it belongs to a class of generalized functions called distributions.

REFERENCES

Schwartz, L. (1973) Théorie des Distributions, Hermann, Paris.

Использованная литература

  1. Schwartz, L. (1973) Théorie des Distributions, Hermann, Paris.
В начало © Copyright2008-2023

Связанный контент в других продуктах

А-Я Индекс Авторы / Редакторы Семантическая карта Визуальная галерея Внести свой вклад Guest